Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurochem Res ; 48(7): 2093-2103, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36790580

RESUMO

Huntington's disease (HD) is a disease characterized by the progressive degeneration of nerve cells in the brain. DNA damage has been implicated in many neurological disorders; however, the association between this damage and the impaired signaling related to neurodegeneration is still unclear. The transcription factor c-AMP-responsive element binding protein (CREB) has a relevant role in the neuronal plasticity process regulating the expression of several genes, including brain-derived neurotrophic factor (BDNF). Here we analyzed the direct link between DNA damage and the expression of genes involved in neuronal plasticity. The study was performed in model cell lines STHdhQ7 (wild type) and STHdhQ111 (HD model). Treatment with Etoposide (Eto) was used to induce double-strand breaks (DSBs) to evaluate the DNA damage response (DDR) and the expression of synaptic plasticity genes. Eto treatment induced phosphorylation of ATM (p-ATM) and H2AX (γH2AX), markers of DDR, in both cell lines. Interestingly, upon DNA damage, STHdhQ7 cells showed increased expression of activity-regulated cytoskeleton associated protein (Arc) and BDNF when compared to the HD cell line model. Additionally, Eto induced CREB activation with a differential localization of its co-activators in the cell types analyzed. These results suggest that DSBs impact differentially the gene expression patterns of plasticity genes in the normal cell line versus the HD model. This effect is mediated by the impaired localization of CREB-binding protein (CBP) and histone acetylation in the HD model. Our results highlight the role of epigenetics and DNA repair on HD and therefore we suggest that future studies should explore in depth the epigenetic landscape on neuronal pathologies with the goal to further understand molecular mechanisms and pinpoint therapeutic targets.


Assuntos
Doença de Huntington , Humanos , Doença de Huntington/genética , Doença de Huntington/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Dano ao DNA , Transdução de Sinais , Plasticidade Neuronal
2.
Fish Shellfish Immunol ; 120: 695-705, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34808359

RESUMO

The brain's immune system is selective and hermetic in most species, including fish, favoring immune responses mediated by soluble immunomodulatory factors such as serotonin and the availability of nutrients against infectious processes. Francisella noatunensis coexist with fish such as Eleginops maclovinus, which raises questions about the susceptibility and immune response of the brain of E. maclovinus against Francisella. In this study, we inoculated fish with different doses of Francisella and took samples for 28 days. We detected bacteria in the brain of fish injected with a high concentration of Francisella at all time points. qPCR analysis of immune genes indicated a response mainly in the medium-dose and early expression of genes involved in iron metabolism. Finally, brain serotonin levels were higher than in uninfected fish in all conditions, suggesting possible immunomodulatory participation in an infectious process.


Assuntos
Encéfalo/imunologia , Doenças dos Peixes , Francisella , Infecções por Bactérias Gram-Negativas , Imunidade Inata , Perciformes , Animais , Doenças dos Peixes/microbiologia , Francisella/patogenicidade , Infecções por Bactérias Gram-Negativas/veterinária , Perciformes/imunologia , Perciformes/microbiologia , Serotonina
3.
Gen Comp Endocrinol ; 293: 113466, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32194046

RESUMO

Cortisol is the main corticosteroid in teleosts, exerting multiple functions by activating glucocorticoid receptors (GR). Most teleost species have two GR genes, gr-1 and gr-2. Some teleost also presents two splice variants for gr-1; gr-1a and gr-1b. In this study, we report for first time the presence of 2 homeologous genes for gr-1 and gr-2, located on chromosomes 4q-13q (gr-1) and 5p-9q (gr-2) of the Salmo salar genome. Furthermore, our results describe gr-1 splice variants derived from chromosome 4 and 13, sharing typical teleost GR elements such as the 9 amino acid insertion in the DNA binding domain (DBD) and variations in the length of the ligand binding domain (LBD). Three splice variants were predicted for the gr-2 homeologous gene in chromosome 5, with differences of a 5 amino acid insertion in the DBD. We also identified an uncommon truncated gr-2 gene in chromosome 9 in salmon, which lacked the DBD and LBD domains. Finally, by designing specific primers for each predicted splice variant, we validated and evaluated the expression of their transcripts in S. salar subjected to stress caused by stocking density. Differences were observed in the expression of all identified mRNAs, revealing that gr-1 and gr-2 splice variants were upregulated in head kidney and gills of post-stressed fish. In conclusion, our findings suggest that from specific salmonid genomic duplication (125 MYA), two gene copies of each GR receptor were generated in S. salar. The identified splice variants could contribute to the variability of GR receptor complex modulation expression during stressful events, leading to variations in physiological responses in fish.


Assuntos
Processamento Alternativo/genética , Receptores de Glucocorticoides/genética , Salmo salar/genética , Estresse Fisiológico/genética , Animais , Regulação da Expressão Gênica , Genoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transcrição Gênica
4.
Molecules ; 23(1)2017 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-29267250

RESUMO

Resveratrol is a polyphenolic natural compound produced by a variety of crops. Currently, resveratrol is considered a multi-target anti-cancer agent with pleiotropic activity, including the ability to prevent the proliferation of malignant cells by inhibiting angiogenesis and curtailing invasive and metastatic factors in many cancer models. However, the molecular mechanisms mediating resveratrol-specific effects on lymphoma cells remain unknown. To begin tackling this question, we treated the Burkitt's lymphoma cell line Ramos with resveratrol and assessed cell survival and gene expression. Our results suggest that resveratrol shows a significant anti-proliferative and pro-apoptotic activity on Ramos cells, inducing the DNA damage response, DNA repairing, and modulating the expression of several genes that regulate the apoptotic process and their proliferative activity.


Assuntos
Antineoplásicos/química , Resveratrol/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linfoma de Burkitt , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Resveratrol/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...